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If a variational trial function of form exp ( - a r  1 - a r 2 ) f ( r  12) is postulated for the ground-state of 
helium-like ions, then for a given a it is shown that the variation principle leads to an ordinary second 
order differential equation for f ,  the solution of which represents the "optimum" function f for use 
with a trial function of this type, in the sense that this solution minimises the expectation value of the 
Hamiltonian for the system. A solution to the differential equation may be found by the usual series 
expansion method. 

Wenn ein Variationsansatz der Form e x p ( - a r  1 -ar2)f(r12 ) fiJr den Grundzustand von He- 
artigen Ionen vorausgesetzt wird, so wird gezeigt, dab (bei gegebenem a) das Variationsprinzip zu 
einer gewShnlichen Differentialgleichung 2. Ordnung ffir f fiihrt. Ihre L6sung stellt eine "optimale", 
den Erwartungswert des Hamiltonoperators des Systems minimisierende Funktion des angegebenen 
Typs dar. Eine L6sung der Differentialgleichung kann mit der gew6hnlichen Methode eines Reihen- 
entwicklungs-Ansatzes gefunden werden. 

Si l'on prend comme fonction variationnelle d'essai pour l'6tat fondamental des ions de type 
h61ium: exp ( - a  r 1 - a t2 ) f ( r  12) le principe variationnel m6ne pour a constant/t une 6quation diff6ren- 
tielle du second ordre pour f .  La solution, de cette 6quation repr6sente la <<meilleure>> fonction f / t  
utiliser avec une fonction d'essai de ce typel car elle minimise la valeur moyenne de l'hamiltonien. Cette 
solution peut ~tre obtenue par la m6thode ordinaire de d6veloppement en s6rie, t 

Introduction 

Variational calculations of the ground-state energy of helium-like ions fre- 
quently commence with a very simple configuration space trial function of the 
symmetric type 

q) = exp( - -a r  I -- ar2)f(u), (1) 
U ~ r12 

where r 12 is the distance between electrons 1 and 2, with the usual nomenclature. 
Obviously this is not the only type of trial function which may be utilised, and 
restricting ~o to this limited form will certainly decrease our flexibility of choice, 
since the only variables at our disposal are the exponent a and the correlation 
factor f .  Denoting the term in front o f f  by the title uncorrelated function, it would 
clearly be of interest to see whether for a particular form of the uncorrelated 
function (not necessarily restricted to the exponential form (1)), i twould be possible 
to select some particular function f which would minimise the expectation value 
of the Hamiltonian, ( H ) ,  more than any other function f .  If such can be found, 
with a given uncorrelated function, then we should be justified in calling that f the 
"opt imum" correlation factor corresponding to the chosen form of the uncorrelated 
part. Clearly again, we may vary both the uncorrelated and correlated parts of the 
trial function in order to minimise ( H ) ,  and the usual method of doing this is to 
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ascribe pre-determined functional forms to both the correlated and uncorrelated 
portions, and to vary certain disposable parameters  attached to these functions. 

In theory the technique to be described can be applied to any helium-like 
trial function which is a function of the variables h ,  r2 and u, provided the part  
f(u) is separated from the uncorrelated portion, as in (1), but to keep the mathe- 
matics to an absolute minimum so that we do not lose the wood for the trees, we 
shall restrict the discussion to our trial function (1). 

Variational Method 

The non-relativistic Hamil tonian for a helium-like ion, in atomic units, is 

1 1 z z + 1 (2) 
H = -- ~-  V12 - ~-  1722 ri r2 q2 ' 

with the usual notation, z being the nuclear charge. Using the trial configuration 
space function (1) (all spin functions have been factored off), we know that for this 
trial function the minimum value of the expectation value 

(~olHle)  
( H )  - ( 3 )  <q,l~o) 

will yield an upper bound to the ground-state energy of the system. From (3) and 
(1) we see that the function f must be such that the normalization integral con- 
verges. 

To evaluate the integrals in (3), it is convenient to use as integration variables 
the coordinates 

S=rl q-r2, 
t = r 1 -- r2, (4) 

U m r l 2 ,  

and to integrate first over s and t, leaving the u integration till last. In these co- 
ordinates the volume element for in tegra t ion  over the whole of configuration 
space for electrons 1 and 2 is 

dV = 27C2(S 2 -- t2)u dsdtdu,  

where 
O<__u<oo, 

O<_tNu,  

u G s G o o .  

Substituting (1), (2) and (4) into (3) and integrating over s and t, with a little 
algebra we obtain 

~ duF(u)hF(u) 
(H)  = 3a2-4az  + o (5) 

~o 

duF(u)V(u) 
0 
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where d 2 
d u  2 

+G(u) ,  (6) 

G(u)= 1-~-~(z-a) yr exp ( -  2y) 1 1 2 1 dP 
Q(u) + - -  + + . - - - - ,  (7) u 4 - P  2 du 

Q(u) = e x p ( - 2 y ) u  + 2y 2 + , (8) 

1 d 
P = Q(u), (9) 

Q(u) du 

F(u) = f (u)  [Q(u)] ~ , (10) 

y = a u .  

Now, from (5), the variational theorem tells us that the minimum value 

(11) 

( H ) ~  = 3a 2 - 4az + k ,  (12) 

for a given a, is reached when F satisfies the eigenvalue equation 

hF(u) = kF(u).  (13) 

For  a bound ground state we only seek those values o fk  which make (12) negative, 
so that we shall write 

(H) , ,  = - a  2 . (14) 

From (6-13), the following differential equation for f may be set up: 

, d2f (4y 3 + 6y 2 + .~y) dy  2 + ( -  8y 3 + 4y 2 + 12y + 6) dydf 

= f ( A y  3 + By  2 + Cy + D), 

where 

A 
16(z - a) 4k 

a ~/2 , 

4 6k 
B -  a a 2 ' 

6 3k 
C =  a a 2 ' 

D = 3/a, 

(t5). 

(16) 

and we are only interested in those values of k which render (12) negative. Since 
we wish f to behave regularly at y = 0, the usual method [1] of Frobenius for 
solving in series form leads to (since the point y -- 0 is a singular point for (15) we 
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neglect the unphysical  solution which behaves as y -1  for y ~ 0 ) :  

f =  ~ d , y " ,  
n = O  

where we choose 

doll .  
Compar ing  coefficients of  powers of y in the usual way:  

d I -- 1/2a, 

and we obtain the five-term recurrence relation 

(17) 

(18) 

with 

Hence 

3(n + 1) (n + 2 )d .  + 1 + (6n 2 + 6n - D)d. 
"-~ [ 4  (n  - -  1 ) 2 _ C ]  d, _ 1 - [8 (n - 2) + B ] d , _  2 - A d,_ 3 = 0 ,  

(19) 

d _ 3 = d _ 2 = d _ l = O .  

1 - 2k 
d 2 - 12a 2 , 

1 ( � 88  2k) (20) 

d3 = 18~ + 36a ~ '  

and so on. 
Because (19) is a five-term recurrence relation, and no t  a two-term relation, we 

cannot  determine the eigenvalue k in the usual way adopted  in quan tum mechanics  
[2], by restricting the asymptot ic  behaviour  o f f  for large y. However ,  to normalize 
the trial wavefunct ion (1), we know that  as y ~ ~ ,  f must  not  increase as rapidly as 
exp(y). 

By direct numerical  solution of  (15) (or, rather, of  another  differential equat ion 
from which to determine the correlat ion factor f(u)), at the same time optimising 
the parameter  a so as to minimise (12), Green et al. [3] computed  the following 
values for the helium a t o m  (z = 2): 

~z = 2.89126, 
a = 1.848. (21) 

Hence 

k = 1.6474 (22) 

in this case. 
Thus  if these values for a and k are inserted into (19-20) for z = 2, then we can 

compute  the numerical  coefficients d, in (17), and so obtain the power  series for 
that  op t imum correlat ion factor for helium which corresponds to using the trial 
form (1). It  should be noted that  when the min imum expectation value (12) of the 
Hami l ton ian  is measured in the a tomic  units we have adopted,  then the value (21) 
for ~z is to be compared  with the"exact"  Pekeris [-4] value for the min imum ground  
state energy of  hel ium: - 2.9037 a.u. 
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From (17) and (18) we note that as u~O, f(u) behaves as 

1 
1 + ~-  u,  (23) 

so that it satisfies the orbital cusp condition [5] 

( l d f ~  1 
f du 5=o  = ~-" (24) 

The behaviour (23) shown by the correlation factor for very small values of the 
interelectronic distance is the same as that shown by the Slater [6] correlation 
factor 

e x p ( 1  u)  (25) 

and the Conroy [7] correlation factor 

El(U) = ,=o n!(n+l)! ' (26) 

where E 1 is the Bessel-Clifford function. It has been shown [8] that both (25) and 
(26) are, in fact, special cases of a whole class of correlation factors expressed in 
terms of confluent hypergeometric functions. 

In the asymptotic case of u ~ o o ,  the leading terms in (15) give the equation 

d2f  d f  
- 8 ~ -  - A I  = 0 (27) 

with possible solutions 

f = e x p [ y ( l  _+ ~ - ) ] ,  (28) 

where we have used (16) and (12) with (14). If the trial function (1) is to be nor- 
malised, however, we know that the plus sign in (28) is inadmissible, so that the 
asymptotic behaviour o f f  as u ~  oo is characterised by (since y - - au )  

f(u) = exp [(a - ~)u]. (29) 

Hence (23) and (29) summarize the behaviour of the correlation factor for 
very small and very large values, respectively, of u. 

Acknowledgement. The author is indebted to Professor C. A. Coulson for very helpful correspond- 
ence on the problem. 
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